Copied to
clipboard

G = C23.27D20order 320 = 26·5

6th non-split extension by C23 of D20 acting via D20/C20=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.27D20, C24.64D10, C23.16Dic10, (C23×C4).8D5, (C22×C20)⋊25C4, (C2×C20).475D4, C42(C23.D5), (C22×C4)⋊8Dic5, C2010(C22⋊C4), C2.4(C207D4), (C23×C20).11C2, C222(C4⋊Dic5), C22.60(C2×D20), (C22×C10).26Q8, C10.79(C4⋊D4), C55(C23.7Q8), (C22×C4).433D10, (C22×C10).143D4, C10.68(C22⋊Q8), C23.31(C2×Dic5), C2.5(C20.48D4), C22.63(C4○D20), (C23×C10).99C22, C22.32(C2×Dic10), C23.303(C22×D5), C10.10C4224C2, C10.68(C42⋊C2), (C22×C10).363C23, (C22×C20).484C22, C22.50(C22×Dic5), (C22×Dic5).66C22, C2.12(C23.21D10), C10.79(C2×C4⋊C4), (C2×C10)⋊10(C4⋊C4), (C2×C4⋊Dic5)⋊16C2, C2.16(C2×C4⋊Dic5), (C2×C10).44(C2×Q8), (C2×C20).455(C2×C4), C2.6(C2×C23.D5), (C2×C10).549(C2×D4), (C2×C4).85(C2×Dic5), C22.87(C2×C5⋊D4), (C2×C10).91(C4○D4), (C2×C4).260(C5⋊D4), C10.111(C2×C22⋊C4), (C2×C23.D5).18C2, (C2×C10).294(C22×C4), (C22×C10).204(C2×C4), SmallGroup(320,839)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C23.27D20
C1C5C10C2×C10C22×C10C22×Dic5C2×C4⋊Dic5 — C23.27D20
C5C2×C10 — C23.27D20
C1C23C23×C4

Generators and relations for C23.27D20
 G = < a,b,c,d,e | a2=b2=c2=d20=1, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 638 in 234 conjugacy classes, 103 normal (25 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×4], C4 [×6], C22 [×3], C22 [×8], C22 [×12], C5, C2×C4 [×8], C2×C4 [×22], C23, C23 [×6], C23 [×4], C10 [×3], C10 [×4], C10 [×4], C22⋊C4 [×4], C4⋊C4 [×4], C22×C4 [×2], C22×C4 [×4], C22×C4 [×8], C24, Dic5 [×4], C20 [×4], C20 [×2], C2×C10 [×3], C2×C10 [×8], C2×C10 [×12], C2.C42 [×2], C2×C22⋊C4 [×2], C2×C4⋊C4 [×2], C23×C4, C2×Dic5 [×12], C2×C20 [×8], C2×C20 [×10], C22×C10, C22×C10 [×6], C22×C10 [×4], C23.7Q8, C4⋊Dic5 [×4], C23.D5 [×4], C22×Dic5 [×4], C22×C20 [×2], C22×C20 [×4], C22×C20 [×4], C23×C10, C10.10C42 [×2], C2×C4⋊Dic5 [×2], C2×C23.D5 [×2], C23×C20, C23.27D20
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×6], Q8 [×2], C23, D5, C22⋊C4 [×4], C4⋊C4 [×4], C22×C4, C2×D4 [×3], C2×Q8, C4○D4 [×2], Dic5 [×4], D10 [×3], C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4⋊D4 [×2], C22⋊Q8 [×2], Dic10 [×2], D20 [×2], C2×Dic5 [×6], C5⋊D4 [×4], C22×D5, C23.7Q8, C4⋊Dic5 [×4], C23.D5 [×4], C2×Dic10, C2×D20, C4○D20 [×2], C22×Dic5, C2×C5⋊D4 [×2], C20.48D4 [×2], C2×C4⋊Dic5, C23.21D10, C207D4 [×2], C2×C23.D5, C23.27D20

Smallest permutation representation of C23.27D20
On 160 points
Generators in S160
(1 37)(2 38)(3 39)(4 40)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(41 151)(42 152)(43 153)(44 154)(45 155)(46 156)(47 157)(48 158)(49 159)(50 160)(51 141)(52 142)(53 143)(54 144)(55 145)(56 146)(57 147)(58 148)(59 149)(60 150)(61 93)(62 94)(63 95)(64 96)(65 97)(66 98)(67 99)(68 100)(69 81)(70 82)(71 83)(72 84)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)(79 91)(80 92)(101 124)(102 125)(103 126)(104 127)(105 128)(106 129)(107 130)(108 131)(109 132)(110 133)(111 134)(112 135)(113 136)(114 137)(115 138)(116 139)(117 140)(118 121)(119 122)(120 123)
(1 37)(2 38)(3 39)(4 40)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(41 74)(42 75)(43 76)(44 77)(45 78)(46 79)(47 80)(48 61)(49 62)(50 63)(51 64)(52 65)(53 66)(54 67)(55 68)(56 69)(57 70)(58 71)(59 72)(60 73)(81 146)(82 147)(83 148)(84 149)(85 150)(86 151)(87 152)(88 153)(89 154)(90 155)(91 156)(92 157)(93 158)(94 159)(95 160)(96 141)(97 142)(98 143)(99 144)(100 145)(101 124)(102 125)(103 126)(104 127)(105 128)(106 129)(107 130)(108 131)(109 132)(110 133)(111 134)(112 135)(113 136)(114 137)(115 138)(116 139)(117 140)(118 121)(119 122)(120 123)
(1 140)(2 121)(3 122)(4 123)(5 124)(6 125)(7 126)(8 127)(9 128)(10 129)(11 130)(12 131)(13 132)(14 133)(15 134)(16 135)(17 136)(18 137)(19 138)(20 139)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 116)(37 117)(38 118)(39 119)(40 120)(41 86)(42 87)(43 88)(44 89)(45 90)(46 91)(47 92)(48 93)(49 94)(50 95)(51 96)(52 97)(53 98)(54 99)(55 100)(56 81)(57 82)(58 83)(59 84)(60 85)(61 158)(62 159)(63 160)(64 141)(65 142)(66 143)(67 144)(68 145)(69 146)(70 147)(71 148)(72 149)(73 150)(74 151)(75 152)(76 153)(77 154)(78 155)(79 156)(80 157)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 150 37 85)(2 149 38 84)(3 148 39 83)(4 147 40 82)(5 146 21 81)(6 145 22 100)(7 144 23 99)(8 143 24 98)(9 142 25 97)(10 141 26 96)(11 160 27 95)(12 159 28 94)(13 158 29 93)(14 157 30 92)(15 156 31 91)(16 155 32 90)(17 154 33 89)(18 153 34 88)(19 152 35 87)(20 151 36 86)(41 139 74 116)(42 138 75 115)(43 137 76 114)(44 136 77 113)(45 135 78 112)(46 134 79 111)(47 133 80 110)(48 132 61 109)(49 131 62 108)(50 130 63 107)(51 129 64 106)(52 128 65 105)(53 127 66 104)(54 126 67 103)(55 125 68 102)(56 124 69 101)(57 123 70 120)(58 122 71 119)(59 121 72 118)(60 140 73 117)

G:=sub<Sym(160)| (1,37)(2,38)(3,39)(4,40)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(41,151)(42,152)(43,153)(44,154)(45,155)(46,156)(47,157)(48,158)(49,159)(50,160)(51,141)(52,142)(53,143)(54,144)(55,145)(56,146)(57,147)(58,148)(59,149)(60,150)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100)(69,81)(70,82)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135)(113,136)(114,137)(115,138)(116,139)(117,140)(118,121)(119,122)(120,123), (1,37)(2,38)(3,39)(4,40)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,141)(97,142)(98,143)(99,144)(100,145)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135)(113,136)(114,137)(115,138)(116,139)(117,140)(118,121)(119,122)(120,123), (1,140)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,127)(9,128)(10,129)(11,130)(12,131)(13,132)(14,133)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,100)(56,81)(57,82)(58,83)(59,84)(60,85)(61,158)(62,159)(63,160)(64,141)(65,142)(66,143)(67,144)(68,145)(69,146)(70,147)(71,148)(72,149)(73,150)(74,151)(75,152)(76,153)(77,154)(78,155)(79,156)(80,157), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,150,37,85)(2,149,38,84)(3,148,39,83)(4,147,40,82)(5,146,21,81)(6,145,22,100)(7,144,23,99)(8,143,24,98)(9,142,25,97)(10,141,26,96)(11,160,27,95)(12,159,28,94)(13,158,29,93)(14,157,30,92)(15,156,31,91)(16,155,32,90)(17,154,33,89)(18,153,34,88)(19,152,35,87)(20,151,36,86)(41,139,74,116)(42,138,75,115)(43,137,76,114)(44,136,77,113)(45,135,78,112)(46,134,79,111)(47,133,80,110)(48,132,61,109)(49,131,62,108)(50,130,63,107)(51,129,64,106)(52,128,65,105)(53,127,66,104)(54,126,67,103)(55,125,68,102)(56,124,69,101)(57,123,70,120)(58,122,71,119)(59,121,72,118)(60,140,73,117)>;

G:=Group( (1,37)(2,38)(3,39)(4,40)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(41,151)(42,152)(43,153)(44,154)(45,155)(46,156)(47,157)(48,158)(49,159)(50,160)(51,141)(52,142)(53,143)(54,144)(55,145)(56,146)(57,147)(58,148)(59,149)(60,150)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100)(69,81)(70,82)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135)(113,136)(114,137)(115,138)(116,139)(117,140)(118,121)(119,122)(120,123), (1,37)(2,38)(3,39)(4,40)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,71)(59,72)(60,73)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,153)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,141)(97,142)(98,143)(99,144)(100,145)(101,124)(102,125)(103,126)(104,127)(105,128)(106,129)(107,130)(108,131)(109,132)(110,133)(111,134)(112,135)(113,136)(114,137)(115,138)(116,139)(117,140)(118,121)(119,122)(120,123), (1,140)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,127)(9,128)(10,129)(11,130)(12,131)(13,132)(14,133)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,116)(37,117)(38,118)(39,119)(40,120)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,100)(56,81)(57,82)(58,83)(59,84)(60,85)(61,158)(62,159)(63,160)(64,141)(65,142)(66,143)(67,144)(68,145)(69,146)(70,147)(71,148)(72,149)(73,150)(74,151)(75,152)(76,153)(77,154)(78,155)(79,156)(80,157), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,150,37,85)(2,149,38,84)(3,148,39,83)(4,147,40,82)(5,146,21,81)(6,145,22,100)(7,144,23,99)(8,143,24,98)(9,142,25,97)(10,141,26,96)(11,160,27,95)(12,159,28,94)(13,158,29,93)(14,157,30,92)(15,156,31,91)(16,155,32,90)(17,154,33,89)(18,153,34,88)(19,152,35,87)(20,151,36,86)(41,139,74,116)(42,138,75,115)(43,137,76,114)(44,136,77,113)(45,135,78,112)(46,134,79,111)(47,133,80,110)(48,132,61,109)(49,131,62,108)(50,130,63,107)(51,129,64,106)(52,128,65,105)(53,127,66,104)(54,126,67,103)(55,125,68,102)(56,124,69,101)(57,123,70,120)(58,122,71,119)(59,121,72,118)(60,140,73,117) );

G=PermutationGroup([(1,37),(2,38),(3,39),(4,40),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(41,151),(42,152),(43,153),(44,154),(45,155),(46,156),(47,157),(48,158),(49,159),(50,160),(51,141),(52,142),(53,143),(54,144),(55,145),(56,146),(57,147),(58,148),(59,149),(60,150),(61,93),(62,94),(63,95),(64,96),(65,97),(66,98),(67,99),(68,100),(69,81),(70,82),(71,83),(72,84),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90),(79,91),(80,92),(101,124),(102,125),(103,126),(104,127),(105,128),(106,129),(107,130),(108,131),(109,132),(110,133),(111,134),(112,135),(113,136),(114,137),(115,138),(116,139),(117,140),(118,121),(119,122),(120,123)], [(1,37),(2,38),(3,39),(4,40),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(41,74),(42,75),(43,76),(44,77),(45,78),(46,79),(47,80),(48,61),(49,62),(50,63),(51,64),(52,65),(53,66),(54,67),(55,68),(56,69),(57,70),(58,71),(59,72),(60,73),(81,146),(82,147),(83,148),(84,149),(85,150),(86,151),(87,152),(88,153),(89,154),(90,155),(91,156),(92,157),(93,158),(94,159),(95,160),(96,141),(97,142),(98,143),(99,144),(100,145),(101,124),(102,125),(103,126),(104,127),(105,128),(106,129),(107,130),(108,131),(109,132),(110,133),(111,134),(112,135),(113,136),(114,137),(115,138),(116,139),(117,140),(118,121),(119,122),(120,123)], [(1,140),(2,121),(3,122),(4,123),(5,124),(6,125),(7,126),(8,127),(9,128),(10,129),(11,130),(12,131),(13,132),(14,133),(15,134),(16,135),(17,136),(18,137),(19,138),(20,139),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,116),(37,117),(38,118),(39,119),(40,120),(41,86),(42,87),(43,88),(44,89),(45,90),(46,91),(47,92),(48,93),(49,94),(50,95),(51,96),(52,97),(53,98),(54,99),(55,100),(56,81),(57,82),(58,83),(59,84),(60,85),(61,158),(62,159),(63,160),(64,141),(65,142),(66,143),(67,144),(68,145),(69,146),(70,147),(71,148),(72,149),(73,150),(74,151),(75,152),(76,153),(77,154),(78,155),(79,156),(80,157)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,150,37,85),(2,149,38,84),(3,148,39,83),(4,147,40,82),(5,146,21,81),(6,145,22,100),(7,144,23,99),(8,143,24,98),(9,142,25,97),(10,141,26,96),(11,160,27,95),(12,159,28,94),(13,158,29,93),(14,157,30,92),(15,156,31,91),(16,155,32,90),(17,154,33,89),(18,153,34,88),(19,152,35,87),(20,151,36,86),(41,139,74,116),(42,138,75,115),(43,137,76,114),(44,136,77,113),(45,135,78,112),(46,134,79,111),(47,133,80,110),(48,132,61,109),(49,131,62,108),(50,130,63,107),(51,129,64,106),(52,128,65,105),(53,127,66,104),(54,126,67,103),(55,125,68,102),(56,124,69,101),(57,123,70,120),(58,122,71,119),(59,121,72,118),(60,140,73,117)])

92 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P5A5B10A···10AD20A···20AF
order12···222224···44···45510···1020···20
size11···122222···220···20222···22···2

92 irreducible representations

dim111111222222222222
type+++++++-+-++-+
imageC1C2C2C2C2C4D4D4Q8D5C4○D4Dic5D10D10C5⋊D4Dic10D20C4○D20
kernelC23.27D20C10.10C42C2×C4⋊Dic5C2×C23.D5C23×C20C22×C20C2×C20C22×C10C22×C10C23×C4C2×C10C22×C4C22×C4C24C2×C4C23C23C22
# reps12221842224842168816

Matrix representation of C23.27D20 in GL5(𝔽41)

10000
01000
004000
00010
000040
,
400000
01000
00100
00010
00001
,
10000
040000
004000
000400
000040
,
10000
09000
003200
000180
000016
,
90000
003200
09000
000016
000180

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,40],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,9,0,0,0,0,0,32,0,0,0,0,0,18,0,0,0,0,0,16],[9,0,0,0,0,0,0,9,0,0,0,32,0,0,0,0,0,0,0,18,0,0,0,16,0] >;

C23.27D20 in GAP, Magma, Sage, TeX

C_2^3._{27}D_{20}
% in TeX

G:=Group("C2^3.27D20");
// GroupNames label

G:=SmallGroup(320,839);
// by ID

G=gap.SmallGroup(320,839);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,232,422,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=1,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽